Tag: klankoptimalisatie

  • Is localisatie in mijn stereobeeld voldoende nauwkeurig?

    Deze blog maakt deel uit van een reeks over hoe je je luistersysteem beter leert kennen via gerichte luistertests. Heb je de inleiding gemist? Klik dan hier.

    In de vorige post onderzocht je of je stereobeeld voldoende gecentreerd en breed is.

    Vandaag gaan we een stap verder en testen we hoe nauwkeurig je systeem én gehoor geluiden in het stereobeeld kunnen lokaliseren.

    Ik geef eerst een korte uitleg over wat localisatie precies is, waarom het bij een geluidssysteem net dat tikkeltje complexer is dan in het dagelijks leven, en hoe we dat kunnen testen. Daarna volgen een reeks oefeningen, van makkelijk naar moeilijk — mét een bonus level voor de fijnproevers. ;o)

    Context en uitleg

    Liever meteen aan de slag? Klik hier

    Localisatie is het vermogen van ons gehoor om te bepalen waar een geluid zich bevindt in de ruimte rondom ons.

    In het dagelijks leven zijn dat honderden verschillende fysieke bronnen met elk een unieke plek. Maar bij een geluidssysteem komt al die informatie van twee fysieke bronnen — je speakers of hoofdtelefoon — die samen de illusie creëren van vele virtuele bronnen in een virtuele ruimte. Hoe overtuigend die illusie is, hangt af van hoe nauwkeurig je systeem, je ruimte én de gebruikte mixtechnieken erin slagen om je oren en hersenen te foppen.

    Waarom deze luistertests?

    In deze blog geef ik je oefeningen om de grenzen van je stereobeeld af te tasten. We starten met grote, duidelijke verschillen die op zowat elk goed stereosysteem hoorbaar zijn. Daarna maken we het stap voor stap subtieler, tot we uitkomen bij verschillen die technisch én menselijk nauwelijks nog waarneembaar zijn. Wie de laatste test correct weet te scoren, heeft niet alleen een bijzonder nauwkeurig systeem, maar ook een scherp gehoor.

    Wat is een blinde luistertest?

    Een blinde luistertest is een manier om je oren objectief te laten oordelen, zonder dat je weet wat er verandert. Je hoort een aantal keer een A/B-vergelijking en moet telkens aanduiden of je een verschil merkt en zo ja, welke van de twee anders is. Het elimineert verwachtingsbias en maakt je bevindingen betrouwbaarder.

    Om met zekerheid te zeggen dat iets hoorbaar is, worden er meerdere steekproeven gedaan — idealiter minstens 10 rondes van dezelfde test:

    • 9/10 of meer correct: zeker hoorbaar
    • 6 tot 8/10 correct: mogelijk hoorbaar
    • 5 of lager: niet hoorbaar

    Begin op hoofdtelefoon

    Ben je nog niet vertrouwd met dit soort luistertests? Start dan op hoofdtelefoon. Localisatie is daar eenvoudiger te beoordelen omdat:

    • er geen akoestische invloed van je ruimte is,
    • je oren volledig gescheiden worden van elkaar,
    • en storend omgevingsgeluid grotendeels wegvalt.

    Eens je het daar onder de knie hebt, kun je overstappen naar speakers.

    Aan de slag!

    De luistertests in deze blogpost zijn gemaakt met Panpot van Goodhertz. Dit is een bijzonder handige tool omdat je er vier verschillende panningtechnieken onafhankelijk van elkaar mee kunt toepassen en testen, ideaal om de impact van elk principe afzonderlijk te horen. Meer info vind je op de Goodhertz Panpot website.

    Testopbouw

    Elke test focust op één niveau; van basis LCR panning (100%), tot uiterst nauwkeurig ‘audio god’ panning (3%). Die laatste is extreem uitdagend — ik geef toe: ik hoor dit zelf niet. Misschien jij wel … ?

    Techniek 1: Level Panning

    Dit is de klassieke en meest gebruikte panningtechniek, waarbij het volume van een geluid links en rechts wordt aangepast. Wanneer een geluid luider klinkt in één oor dan in het andere, interpreteren je hersenen dat als een aanwijzing voor richting. Dit is de standaardmethode in vrijwel elke mixer sinds de jaren ’70.

    Doe de test …

    Techniek 2: Delay Panning

    Bij deze techniek wordt een minimale vertraging aangebracht tussen het linker- en rechterkanaal. Minuscule vertragingen vanaf 5 honderdsten van een milliseconden kunnen al de illusie van een verschoven bron creëren.

    Doe de test …

    Techniek 3: Spectral Panning

    Hier verandert de klankkleur afhankelijk van de panpositie. In de natuur dempt je hoofd de hoge frequenties van geluiden die van links of rechts komen. Spectral panning imiteert dit door hogere frequenties te versterken in de panrichting en te verzwakken aan de andere kant.

    Doe de test …

    Techniek 4: Phase Panning

    De meest ongebruikelijke techniek. Hierbij wordt een constante faseverschuiving toegepast tussen links en rechts. Net als bij delay panning verandert de balans in volume niet, maar wel het tijdsverloop van het signaal.

    Doe de test …

    What’s next?

    In de volgende blogpost leg ik de focus op het frequentiebereik van je systeem. Is je set-up écht full range? Welke frequenties hoor je goed, welke minder? En hoe kun je dat eenvoudig testen zonder meetapparatuur?

    Zoals altijd: deze reeks is ontstaan uit vragen van lezers, cursisten en klanten. Heb je zelf een vraag, idee of suggestie? Laat het gerust weten via de website — groot of klein, eenvoudig of complex, alles is welkom. Ik werk er graag een volgende blogpost rond uit. Bring it on!

  • Is glas problematisch in een muziekruimte?

    Het korte antwoord

    Vensterglas reflecteert niet meer dan andere harde, vlakke bouwmaterialen. Voor muzikale ruimtes streven we echter zoveel mogelijk naar diffuserende en absorberende bouwelementen. Dit is veel moeilijker – en dus duurder – te realiseren in glas. Het kan dus zijn dat je je raam (gedeeltelijk) moet bedekken.

    Het lange antwoord

    Glas heeft een slechte reputatie in muziekland. Vele mensen die ik spreek hebben de reflex om het venster in hun ruimte aan te duiden als iets waar ze zich zorgen over maken; een gebrek, een akoestisch probleem dat ze opgelost willen zien. Waarom precies? Vaak wordt er iets vaags gezegd over reflecties, maar de echte reden blijft onduidelijk.

    Ik begrijp het instinct. Glas is vlak en hard en het doet ons aan spiegels denken. We zien zelfs een glimps van onze bezorgde blik in spiegelbeeld wanneer we ernaar kijken. Dus ja, het lijkt bijna logisch dat dit materiaal veel harder reflecteert dan andere materialen. En reflecties, dat is wat we zoveel mogelijk willen vermijden, toch?

    Reflecteert glas erger dan andere materialen?

    Wanneer geluid een object raakt, gebeuren er drie dingen: een deel van het geluid gaat er dwars doorheen (transmissie), een deel wordt geabsorbeerd (absorptie), en de rest wordt teruggekaatst (reflectie). Hoeveel van elk gebeurt, hangt af van de eigenschappen van object en het materiaal waaruit het gemaakt is.

    De sterkste reflecties komen van materialen die weinig absorberen én weinig doorlaten.

    Maar is glas echt zo anders dan een gyprocwand, een gemetselde muur, pleisterwerk, beton of parket?

    Qua absorptie doen alle voorbeeldmaterialen het allemaal ongeveer even slecht; in de midden- en hoge frequenties (boven 250 Hz) krabbelen ze met moeite alfa-waarden van 0,02 tot 0,05 bij mekaar. Dat betekent dat vrijwel alle geluidsenergie die erop invalt of er doorheen gaat, of wordt teruggekaatst. Alleen glas en gyproc vertonen nog een beetje absorptie in de lage tonen, al blijft dit beperkt tot zo’n 0,15— nog steeds weinig.

    Glas absorbeert weinig geluid. Dit is niet anders dan bij vele andere bouwmaterialen.

    Qua geluidsisolatie is er wél diversiteit. In de lage tonen scoren zware materialen zoals beton en metselwerk het best. In de midden- en hoge tonen kunnen lichte gyprocwanden dit verschil grotendeels bijbenen. Glas hinkt achterop, met lagere isolatiewaarden over bijna het hele spectrum. Alleen de dikste soorten dubbel glas kunnen enigzins hun mannetje staan.

    In conclusie kunnen we stellen dat glas, ondanks zijn uiterlijk, niet meer reflecteert dan andere massieve bouwmaterialen.

    Maken we ons zorgen over niets?

    Veel van de ruimtes die door mensen als ‘muzikaal’ worden omschreven hebben gemeen dat ze veel uitgesproken absorberende en/of diffuserende constructies hebben, met een absoluut minimum aan grote objecten die zowel reflecterend als vlak zijn.

    Mochten we glas behandelen zoals elk ander stuk muur of plafond, dan was er geen probleem. Zijn er storende reflecties? Dan lossen we dat op met absorptie of diffusie op de juiste plek. Simpel!

    Maar diep vanbinnen houden we van het licht en het uitzicht dat grote ramen ons geven. En de meest toegankelijke, budgetvriendelijke technieken van aborptie en diffusie laten geen licht door. Dus komen we in een tweestrijd terecht: we willen goeie klank, zonder ons raam af te afdekken.

    You can’t have your cake and eat it too

    De instapkosten voor wie muziek wil maken zijn historisch nog nooit zo laag geweest. De prijs/kwaliteit van het materiaal waarmee we werken was ondenkbaar enkele decennia geleden.

    Deze trend heeft zich echter niet doorgezet in de bouwsector. Bouwen is nog steeds duur. En akoestiek is een aspect van onze gebouwde omgeving. Het mag dus niet verbazen dat er enig compromis zal moeten zijn, wanneer we een niet-gespecialiseerd gebouw plots een muzikale invulling willen geven.

    Belangrijk hierbij is om geen denkbeeldige problemen op te willen lossen. Glas heeft geen inherent nadeel. De tactiek voor een goede muziekruimte blijft dezelfde, glas of niet. Soms moet je kiezen: een optimale klank of het uitzicht behouden.

    Belangrijk hierbij is om geen denkbeeldige problemen op te willen lossen. Glas heeft geen inherent nadeel. De tactiek voor het optimaliseren van een ruimte voor muziek blijft dezelfde, met of zonder glas. Wel zal er enige bereidheid moeten zijn om, indien de praktijk hier om vraagt, de keuze te maken tussen verschillende prioriteiten.

    Bovendien is akoestische perfectie niet altijd nodig. Soms is het verschil van die ene reflectie zelfs niet eens hoorbaar. Wat écht telt, is dat een ruimte niet alleen goed klinkt, maar ook een plek is waar je graag tijd doorbrengt. En dat laatste is misschien nog wel net iets belangrijker.